return to catalog
Dataset: fcst_land.2021011412
Catalog: /thredds/catalog/files/d628008/fcst_land/202101/catalog.html
dataFormatGRIB-1
authorityedu.ucar.gdex
featureTypeGRID
dataSize1501968
idfiles/d628008/fcst_land/202101/fcst_land.2021011412
Access
Preview

Access:

ServiceTypeDescription
OpenDAP Data Access Access dataset through OPeNDAP using the DAP2 protocol.
DAP4 Data Access Access dataset using the DAP4 protocol.
NetcdfSubset Data Access A web service for subsetting CDM scientific grid datasets.
CdmRemote Data Access Provides index subsetting on remote CDM datasets, using ncstream.
CdmrFeature Data Access Provides coordinate subsetting on remote CDM Feature Datasets, using ncstream.
WCS Data Access Supports access to geospatial data as 'coverages'.
WMS Data Access Supports access to georegistered map images from geoscience datasets.
HTTPServer Data Access HTTP file download.
ISO Metadata Provide ISO 19115 metadata representation of a dataset's structure and metadata.
NCML Metadata Provide NCML representation of a dataset.
UDDC Metadata An evaluation of how well the metadata contained in the dataset conforms to the NetCDF Attribute Convention for Data Discovery (NACDD)

Viewers:

ViewerTypeDescription
Godiva3 Browser
default_viewer.ipynb Jupyter Notebook The TDS default viewer attempts to plot any Variable contained in the Dataset.
Documentation
Dates
Creators
Publishers

Description:

  • Rights: Freely Available
  • summary: Important Notice: Update of JRA-55 data will terminate at the end of January 2024. Please use Near Real-Time Japanese Reanalysis for Three Quarters of a Century (JRA-3Q) at that time. The Japan Meteorological Agency (JMA) conducted JRA-55, the second Japanese global atmospheric reanalysis project. It covers 55 years, extending back to 1958, coinciding with the establishment of the global radiosonde observing system. Compared to its predecessor, JRA-25, JRA-55 is based on a new data assimilation and prediction system (DA) that improves many deficiencies found in the first Japanese reanalysis. These improvements have come about by implementing higher spatial resolution (TL319L60), a new radiation scheme, four-dimensional variational data assimilation (4D-Var) with Variational Bias Correction (VarBC) for satellite radiances, and introduction of greenhouse gases with time varying concentrations. The entire JRA-55 production was completed in 2013, and thereafter will be continued on a real time basis. Specific early results of quality assessment of JRA-55 indicate that a large temperature bias in the lower stratosphere has been significantly reduced compared to JRA-25 through a combination of the new radiation scheme and application of VarBC (which also reduces unrealistic temperature variations). In addition, a dry land surface anomaly in the Amazon basin has been mitigated, and overall forecast scores are much improved over JRA-25. Most of the observational data employed in JRA-55 are those used in JRA-25. Additionally, newly reprocessed METEOSAT and GMS data were supplied by EUMETSAT and MSC/JMA respectively. Snow depth data over the United States, Russia and Mongolia were supplied by UCAR, RIHMI and IMH respectively.
  • NCAR GDEX - JRA-55: Japanese 55-year Reanalysis, Near Real-Time Data(d628008)

Dates:

  • modified : 2021-01-17T14:31:17.714Z

Creators:

  • JP/JMA

Publishers:

return to catalog